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Spatiotemporal dynamics of an intrinsically chaotic field
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In contrast to earlier nonlinear-dynamics investigations concerning the consequences of coupling
limit-cycle oscillators, we propose the conceptionally simple extension of studying the interaction dy-
namics of chaotic subsystems. We illustrate this by simulating a “toy system,” the dynamics of a linear
chain of damped-driven pendulums where the state of the isolated individual pendulum is chaotic. The
harmonic coupling between these chaotic oscillators results in a very complex and rich spatiotemporal
dynamics as a function of coupling strength and system size. This suggests that the extension to realistic
representations of physical systems may provide a fruitful paradigm for studying dynamical disorder in

the real world.

PACS number(s): 05.45.+b

A one-dimensional (1D) chain of interacting point par-
ticles is a paradigm from which we learned about certain
limited dynamical behavior occurring in many-body sys-
tems. From this idealized model has evolved a more gen-
eral picture of a dynamical system defined by an assembly
of a large number of identical subsystems of known in-
trinsic dynamics which are coupled to each other in some
specific manner [1,2]. The general goal is to study the
global dynamical behavior of the total system on the basis
of the known nature of the subsystem and the coupling
between a large number of subsystems. An example
would be a chemical solution of some oscillating reaction
where the total system is imagined as forming a diffusion
coupled field of similar limit-cycle chemical oscillators
[3,4].

We now introduce a further generalization of this syn-
thetic view of a dynamical system by allowing a much
richer intrinsic behavior of the elementary subsystem; in
particular, we consider the dynamics of the “indepen-
dent” subsystem to be chaotic, instead of a simpler limit-
cycle oscillation. Through intersubsystem coupling, the
individual subsystem dynamics may change dramatically
in both space and time. In terms of a linear chain of
atoms, we replace the atom by a chaotic oscillator, or an
“atom” with an internal chaotic state when in isolation.
It is the interatomic coupling between these ‘“‘chaotic
atoms” that gives rise to a very complex and rich spatial-
temporal many-body dynamics as a function of coupling
strength. Of course, we are not limited to chaotic oscilla-
tors, coupled harmonically, and ordered linearly.

Ruelle, in his book entitled Chance and Chaos, points
out that most approximate theories of fluid turbulence as-
sume that turbulence is homogeneous while turbulence is
actually spatially and temporally inhomogeneous with
the coexistence of fluctuating regions of smooth and er-
ratic dynamics [S]: “In reality, a turbulent fluid always
shows clumps of intense turbulence in a relatively quies-
cent background. And hydrodynamicists keep looking
for the correct theory to describe this clumpiness.” This
observation provided the motivation to think of a
coarse-grain model of a system where each subsystem is
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“turbulent” in isolation and to study the total system dy-
namics arising from intersubsystem coupling; i.e., does
the intrinsic “homogeneous turbulence” of the collective
subcells give rise to a global dynamical structure that is
not uniformly turbulent in space and time?

For our “toy system” of a linear chain of chaotic oscil-
lators, we take the chaotic oscillator, or active subsystem,
to be the damped-driven pendulum [6]. Of course, this is
not meant to model a turbulent system. This simple non-
linear mechanical system is the familiar pendulum with
the additional features of a linear damping term propor-
tional to its angular velocity and a driving oscillatory
torque. The angle the pendulum makes with the vertical
is denoted by ¢, « is the damping factor, @, is the natural
frequency of the simple pendulum, and w and A are the
frequency and amplitude of the external torque. The
dynamical equation is a second-order differential equa-
tion,

2
%z—a%‘t’i—wgsianA cos(wr) . (1)

This subsystem can operate in far-from-equilibrium sit-
uations so that it represents a very active functional sub-
unit of the total system. We choose the following values
for the parameter which gives a chaotic state of the iso-
lated pendulum: w©;=2.53, a=0.25, v=1.62, 4 =3.8.
These parameters are not changed in our study.

Our total dynamical system is a linear chain of these
chaotic pendulums coupled harmonically in ¢ with a cou-
pling constant x. The force F, (k) on the kth pendulum
due to the neighboring pendulums is

F (k)=«k[¢(k +1)+d(k —1)—2¢(k)] . ()

We have studied the system dynamics of this linear
chain of chaotic pendulums as a function of chain length
N (or number of pendulums) and coupling constant «.
The initial angles and velocities are taken to be random,
and periodic boundary conditions are imposed between
the two end pendulums. However, we note two obvious
dynamical features of this system: for k=0, we have N
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independent chaotic oscillators, and for k>>1, we have
one “large” chaotic oscillator. We are interested in dis-
covering what is between zero coupling and infinite cou-
pling; hence the many-body physics of chaotic oscillators.
It is obvious that harmonic coupling is a very primitive
coupling scheme. For examples of more complex cou-
pling models (as applied to limit-cycle oscillators), we
refer the reader to the study by Daido [4]. Questioning
whether phenomena in coupled map lattice systems are
really indicative of typical phenomena in systems that are
continuous in time and space, Umberger, Grebogi, Ott,
and Afeyan [7] studied a one-dimensional chain of
Duffing oscillators as a function of driving amplitude.
This pioneering approach showed that chaotic transit be-
havior became longer as the driving amplitude increased
until the time dependence apparently correspond to sus-
tained chaos.

We use a special feature of one-dimensional systems
which distinguishes them from multidimensional systems.
Having the atoms arranged along a single coordinate, we
can treat ‘“‘time” as the second Cartesian axis. So we can
trace the vibrations for each pendulum in time like a mul-
tipen strip-chart recorder where each pen’s average posi-
tion corresponds to the 1D atomic lattice position of a
vertically oriented chain. Instead of tracing the continu-
ous evolution of the vibrations, we record the discrete po-
sitions from a Poincaré section, but connect them with
straight-line segments. This mathematical technique
simplifies the complicated dynamics and is constructed
by viewing the trajectory stroboscopically in such a way
that the motion is observed periodically. The strobe
period is equal to the forcing period of the individual
pendulums and is the same for all of the pendulums. For
periodic motion, there are a finite number of points in the
Poincaré section where the motion continues to return,
and our picture will show a saw-tooth trajectory with
that return period. For chaotic motion, the trajectory
will be “noisy”” with no periodicity. We choose the veloc-
ity from the Poincaré point in generating the stroboscop-
ic trajectory. If we take position, our plots could deviate
from average straight-line behavior due to “kinks” result-
ing from complete revolutions about the pivot of an indi-
vidual pendulum. We also made Poincaré plots for indi-
vidual oscillators. This was not as useful because the
analysis implies ‘“a constancy of dynamical behavior”
during the sampling interval, a condition likely to be
violated for a particular simulation unless prior
knowledge of the dynamics was available.

In Fig. 1, a simplistic description of the general dynam-
ics of our model is presented where three types of behav-
ior are loosely identified (periodic, chaotic, and mixed) as
a function of system size N (the number of pendulums)
and the coupling constant between pendulums. For
periodic behavior, all of the pendulums are oscillating
with a Poincaré periodicity P,, where n is the period re-
turn number. In our study, we have seen only » =1 and
3. The chaotic behavior is characterized by a variety of
the spatiotemporal patterns that will be described later.
The mixed region is composed of periodic and chaotic re-
gions (depending on the coupling) that we choose to asso-
ciate only with the system of size N since we could not
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FIG. 1. The “phase diagram” of the general dynamics of our
model is presented where three types of behavior are qualita-
tively identified (periodic, chaotic, and mixed) as a function of
system size N (the number of pendulums) and the coupling con-
stant k.

identify any common dynamical features in this regime
among the different systems that we studied
(N =18,27,36,45). The simplest identifications were for
regions that have no size dependence in the dynamical
behavior which is the case for k <5 (the boundaries B,
between the various dynamical regions in Fig. 1 are verti-
cal).

In Fig. 1, the dynamics is labeled as chaos I for
0<k<0.5 and chaos II for 0.5<«x<1.3. The strobos-
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FIG. 2. The stroboscopic space-time trajectories for the mod-
el system with N =45 and for « passing through the chaos-II re-
gime as identified in Fig. 1.
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copic space-time (SST) trajectories for the system with
N =45 and for « passing through the transition chaos-1I
regime are shown in Fig. 2. The trajectories for chaos I
are much the same as for k=0.5 in Fig. 2. However, for
chaos II the character, or ‘“texture,” of the SST plot
changes rapidly as « increases toward 1.3. At k=0.6, we
see vertically elongated holes in the space-time fabric
representing relatively quiescent dynamics among a few
nearest-neighbor pendulums and these holes appear to
occur intermittently in time. With increasing k patches
of quiescent dynamics elongate along the time axis, and
the amplitudes of the chaotic noise decrease, eventually
giving the appearance of fuzzy, worn threads of varying
thickness as time evolves (k=1.0). At k=1.1, the pat-
terns along each time string are bizarre, many having
resonating balls of chaotic noise with a quasiperiodic ap-
pearance. P; dynamics occurs at k=1.3.

Passing through P; to P, dynamics, we enter the
chaos-III region bounded by 1.6(4) <k <3.0. In Fig. 3,
we see the chaotic bands traversing the space-time area
leaving patches of periodic or low noise regions, these
patches decreasing in size with increasing coupling until
chaos completely dominates for 2.0 <k <3.0. In Fig. 4,
the superposition of ten consecutive snap-shot
configurations is shown for N =45 and for k=1.64 at
times 200-1000 and using the driven period as the time-
step interval. Note the traveling wave of chaotic behav-
ior. From 3.0<k <4.0, we observe a mixture of P, and
P, and for 4.0 <« <5.0 we observe P;.

k= 164 k=170

k= 1.65 x = 2.50

x = 167 x = 3.00

FIG. 3. The stroboscopic space-time trajectories for the mod-
el system with N =45 and for « passing through the transition
chaos-III regime as identified in Fig. 1.
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FIG. 4. The superposition of ten consecutive snapshot
configurations for our model system with N =45 and for
k=1.64 at times 200-1000 using the driving period as the
time-step interval. Note that the pendulum is depicted as a ball,
hence the overlap of ball images with chaotic motion.

In Fig. 5, for the chaos-IV region, the texture of the ST
plot changes smoothly as « increases from 23.0. We see
vertical stripe bands in the space-time fabric representing
relatively quiescent (low noise) dynamics among the en-
tire chain and these stripes appear to occur intermittently
in time. With increased coupling the stripes of quiescent
dynamics diminish in frequency until the field is solely
chaotic dynamics. When the B4 boundary is reached, the
dynamics becomes P, and remains P, until B, is reached
by increasing k. For the chaos-V region, the ST plot is
much like the chaos-IV region except that the stripes are
much less noisy because of the greater coupling. Extreme
coupling leads to the limit of all of the pendulums vibrat-
ing like a single damped-drive pendulum.

For sufficiently large couplings, the phase diagram has
periodic and chaotic regions (depending on the magni-
tude of the coupling) that scale with the system size N;
e.g., we believe that we have identified common dynami-
cal features in these scaling regimes for the different sizes
studied (N =18,27,36,45). The boundaries Bs, By, and
B, defining the scaling regions in Fig. 1 are slanted with
the slope giving the power-law dependence of the boun-
daries with size N. The « points defining boundary B
scale as N3/2, while B¢ and B scale as N2. The dynami-
cal behavior scaling with N2 as « becomes large can be
understood by approximating our dynamical equations
by the partial differential equation,

2 2
%ZB%-a%?-méSin(@—i—A cos(wt) , (3)
where B=a% and a is the lattice spacing in approximat-
ing Eq. (2) by a second-order partial derivative. If the
characteristic features of the dynamics scale with the
length of the chain L =aN, then from Eq. (3) we con-
clude that B/L?=a/L%*k=const. Therefore, the scale-
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FIG. 5. The stroboscopic trajectories for our model system
with N =45 and for k passing through the chaos-IV regime as
identified in Fig. 1.

invariant dynamics satisfies the relation x=const X N2,
Scale invariance is what is expected in the limit of strong
coupling where the motion between oscillators is forced
to be in concert.

Because the innermost slant boundary Bj intersects
with the outermost vertical boundary B, at approximate-
ly N =15, we see a wedge-shape region expanding with
system size N with dynamics not accounted for by the
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TABLE 1. Dynamical behavior as a function of system size N
and coupling strength « for the “mixed” region.

k 6 7 8 9 101112 13 1415 16 17 18 19 20 21 22
N

45 CcCCP,P,CCCCCPP CP P P P
3 CCCCCP PP CP
27 P, P, P, P, P,

size-invariant regions and the scaling regions bounding
the wedge. Possibly new scaling regions exist but cannot
be determined because of the limited finite-size span of
this study. We list in Table I what we observed for each
system size.

We have learned that this simple model of coupled,
“intrinsically” chaotic subsystems can exhibit a very rich
and complex dynamics, both in space and time. Of
course, the obvious is to study larger systems, different
types of chaotic subsystems, various local and nonlocal
coupling schemes, higher-dimension packings, mixed sys-
tems (chaotic and periodic subsystems), frustration and
much more. For example, Haken has shown that the
Lorenz model of fluid convection is identical with the
model of a single-mode laser (8). If, in Haken’s equations
(7)-(9), the gradient of the electric field is not equated to
zero, we have a partial differential equation that, upon
finite differencing in space, gives rise to a set of coupled
ordinary differential equations. At each lattice point, we
have the Lorenz equations for the discretized state vari-
ables which are coupled to neighboring lattice points by
the field gradient. In the spirit of our study, one would
choose Lorenz parameters to describe chaos and investi-
gate the laser dynamics for increasing field gradients.

However, the very simple concept of modeling the in-
teraction of chaotic subsystems may provide a new para-
digm for studying spatiotemporal chaos in the real world.

The author thanks Dr. Mark Goulian (UCSB) for
stimulating conversations and for bringing Ref. [3] to his
attention.
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FIG. 4. The superposition of ten consecutive snapshot
configurations for our model system with N =45 and for
k=1.64 at times 200-1000 using the driving period as the
time-step interval. Note that the pendulum is depicted as a ball,
hence the overlap of ball images with chaotic motion.



